Given that ABCD is a rhombus, find the value of x.
(X+14)

Answer:
option B. [tex]x=38^o[/tex]
Step-by-step explanation:
we know that
1) The two diagonals of a rhombus are perpendicular
2) The sum of the interior angles in any triangle must be equal to 180 degrees
Let
O ----> the intersection point of the diagonals of the rhombus
In the right triangle OAD
[tex]x^o+(x+14)^o+90^o=180^o[/tex]
solve for x
[tex]x^o+(x+14)^o=90^o[/tex]
[tex]2x=90^o-14^o[/tex]
[tex]2x=76^o[/tex]
[tex]x=38^o[/tex]