Answer:
α =6.369*10⁻³ rad/s²
v₂= 0.6597 m/s
a₂= 14.5 m/s²
d = 4812.3 m
Explanation:
α =angular acceleration
ω = angular velocity
f = frequency
t = time
r= radius
v= linear velocity
d= distance
θ= angle covered for a distance d
a) the angular acceleration is the change in time of angular velocity, then
ω = 2π*f
α = (ω₂-ω₁)/ t = 2π*(f₂-f₁)/ t = 2π*(210 rpm - 480 rpm )/ 74 min = -22.925 rad/min²= 6.369*10⁻³ rad/s²
b) the linear velocity at the end of the music is
v₂= ω₂*r = 2π*f₂*r = 2π*210 rpm* 3 cm = 3958.4 cm/min= 0.6597 m/s
c) the radial acceleration at the end of the music is
a₂= ω₂²*r = 4π²*(210 rpm)²*3 cm = 5222994 cm/min² = 14.5 m/s²
d) the distance d covered under a constant angular acceleration is
ω₂²=ω₁²+2*α*θ
θ = (ω₂² - ω₁²)/(2*α) = 2π²(f₂² - f₁²)/α = 2π²[(210 rpm)² - (480 rpm)²)]/(-22.925 rad/min²) = 160410 rad
then the distance will be
d = r*θ = 3cm * 160410 rad = 481230 cm = 4812.3 m