Respuesta :
Answer:
Part a)
[tex]KE_r = 8 J[/tex]
Part b)
v = 3.64 m/s
Part c)
[tex]KE_f = 12.7 J[/tex]
Part d)
[tex]v = 2.9 m/s[/tex]
Explanation:
As we know that moment of inertia of hollow sphere is given as
[tex]I = \frac{2}{3}mR^2[/tex]
here we know that
[tex]I = 0.0484 kg m^2[/tex]
R = 0.200 m
now we have
[tex]0.0484 = \frac{2}{3}m(0.200)^2[/tex]
[tex]m = 1.815 kg[/tex]
now we know that total Kinetic energy is given as
[tex]KE = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2[/tex]
[tex]KE = \frac{1}{2}mv^2 + \frac{1}{2}I(\frac{v}{R})^2[/tex]
[tex]20 = \frac{1}{2}(1.815)v^2 + \frac{1}{2}(0.0484)(\frac{v}{0.200})^2[/tex]
[tex]20 = 1.5125 v^2[/tex]
[tex]v = 3.64 m/s[/tex]
Part a)
Now initial rotational kinetic energy is given as
[tex]KE_r = \frac{1}{2}I(\frac{v}{R})^2[/tex]
[tex]KE_r = \frac{1}{2}(0.0484)(\frac{3.64}{0.200})^2[/tex]
[tex]KE_r = 8 J[/tex]
Part b)
speed of the sphere is given as
v = 3.64 m/s
Part c)
By energy conservation of the rolling sphere we can say
[tex]mgh = (KE_i) - KE_f[/tex]
[tex]1.815(9.8)(0.900sin27.1) = 20- KE_f[/tex]
[tex]7.30 = 20 - KE_f[/tex]
[tex]KE_f = 12.7 J[/tex]
Part d)
Now we know that
[tex]\frac{1}{2}mv^2 + \frac{1}{2}I(\frac{v}{r})^2 = 12.7[/tex]
[tex]\frac{1}{2}(1.815) v^2 + \frac{1}{2}(0.0484)(\frac{v}{0.200})^2 = 12.7[/tex]
[tex]1.5125 v^2 = 12.7[/tex]
[tex]v = 2.9 m/s[/tex]