Answer:
y(x) = 1 - x
Step-by-step explanation:
Given the two parametric equations:
[tex] x(t)=cos^{2}(6t) [/tex] ---(1)
[tex] sin^{2}(6t) [/tex] ----(2)
We can add eq (1) and eq (2) and consider the trigonometric identity:
[tex] cos^{2}(6t)+sin^(6t) = 1 [/tex]
so,
[tex] x+y=1 [/tex]
in other way we can express this like:
[tex] y(x)=1-x [tex].