You have two exponential functions. One function has the formula g(x) = 3(2 x ). The other function has the formula h(x) = 2 x+1. Which option below gives formula for k(x) = (g – h)(x)? k(x) = 2x k(x) = 5(2x) k(x) = 5(2x+1) k(x) = 2

Respuesta :

Answer:

[tex]k(x)=2^{x}[/tex] ⇒ 1st answer

Step-by-step explanation:

* Lets explain how to solve the problem

∵ [tex]g(x)=3(2^{x})[/tex]

∵ [tex]h(x)=2^{x+1}[/tex]

- Lets revise this rule to use it

# If [tex]a^{n}*a^{m}=a^{n+m}====then==== a^{n+m}=a^{n}*a^{m}[/tex]

- We will use this rule in h(x)

∵ [tex]h(x)=2^{x+1}[/tex]

- Let a = 2 , n = x , m = 1

∴ [tex]h(x)=2^{x}*2^{1}[/tex]

- Now lets find k(x)

∵ k(x) = (g - h)(x)

∵ [tex]g(x)=3(2^{x})[/tex]

∵ [tex]h(x)=2^{x}*2^{1}[/tex]

∴ [tex]k(x)=3(2^{x})-(2^{x}*2^{1})[/tex]

- We have two terms with a common factor [tex]2^{x}[/tex]

∵ [tex]2^{x}[/tex] is a common factor

∵ [tex]\frac{3(2^{x})}{2^{x}}=3[/tex]

∵ [tex]\frac{2^{x}*2^{1}}{2^{x}}=2^{1}=2[/tex]

∴ [tex]k(x) = 2^{x}[3 - 2]=2^{x}(1)=2^{x}[/tex]

* [tex]k(x)=2^{x}[/tex]