For this case, we convert the mixed numbers to fractions:
Box 1: [tex]4 \frac {2} {3} = \frac {3 * 4 + 2} {3} = \frac {14} {3}[/tex]
Box 2: [tex]5 \frac {3} {8} = \frac {8 * 5 + 3} {8} = \frac {43} {8}[/tex]
We add the fractions to find the total weight of the boxes:
[tex]\frac {14} {3} + \frac {43} {8} = \frac {8 * 14 + 43 * 4} {3 * 8} = \frac {112 + 172} {24} = \frac {284 } {24} = \frac {142} {12} = \frac {71} {6}[/tex]
Thus, between the two boxes weigh[tex]\frac {71} {6}[/tex] ounces.
In mixed number: [tex]11 \frac {5} {6}[/tex]
Answer:
[tex]11 \frac {5} {6}[/tex]ounces