Firstly, we can sketch points as
O as (0,0,0)
B as (9,0,9)
E as (9,9,9)
now, we can find vectors
OB=(9,0,9)-(0,0,0)
OB=(9,0,9)
OE=(9,9,9,)-(0,0,0)
OE=(9,9,9)
we can use dot product formula to find angle
[tex]OB\cdot OE=|OE|*|OB|cos(\theta)[/tex]
now, we can find values
[tex]OB\cdot OE=(9,0,9)\cdot (9,9,9) [/tex]
[tex]OB\cdot OE=9*9+0*9+9*9 [/tex]
[tex]OB\cdot OE=162 [/tex]
[tex]|OB|=\sqrt{9^2+0^2+9^2}[/tex]
[tex]|OB|=9\sqrt{2}[/tex]
[tex]|OE|=\sqrt{9^2+9^2+9^2}[/tex]
[tex]|OB|=9\sqrt{3}[/tex]
now, we can plug these values
[tex]162=9\sqrt{2}*9\sqrt{3}|cos(\theta)[/tex]
now, we can solve for theta
[tex]\theta=cos^{-1}(\frac{162}{81\sqrt{6} } )[/tex]
[tex]\theta=0.61548 radians[/tex]............Answer