Respuesta :
Let [tex] l [/tex] be the length and [tex] w [/tex] be the width of the rectangle.
Given perimeter of the rectangle
[tex] 2(l+w)=34 \; l+w=17[/tex]
Area of the rectangle is
[tex] lw=52 [/tex]
Also length is 5 more than twice its width,
[tex] l=2w+5 [/tex]
From the above equations
[tex] (l-w)^2=(l+w)^2-4lw=17^2-4*52=81\\
l-w=9,\; since \; l>w [/tex]
Now [tex] 2l=9+17=26\;,l=13,w=4 [/tex]
The dimensions of the rectangle are length [tex] l=13 [/tex], and width [tex] w=4 [/tex].